

TEACHING BIG DATA WITH LIMITED RESOURCES: PRACTICAL LESSONS FROM A SCALED-DOWN LAB

Assoc. Prof. Dr. Azlan Ismail

- Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA
- Institute for Big Data Analytics and Artificial Intelligence, Universiti Teknologi MARA

- Sharing experience from teaching a data science technology course
 - Students are a mix of background, not all from computer science.
 - Course focuses on real big data tasks using Cloudera Hadoop tools.
- ☐ Sharing experience of using a scaled-down lab
 - Lab refers to: a virtualized teaching environment that simulates real big data systems.
 - The lab setup is modest, but designed to reflect real-world system behavior and performance patterns.

WHY WE BUILT THIS MODEST INFRASTRUCTURE

- 1. Concept-heavy \rightarrow students see theory, not systems
- 2. Abstract infra \rightarrow Real infrastructure remains invisible
- 3. Simplified tools → Systems thinking & troubleshooting hidden
- 4. Cloud platforms -> Greate for production, but abstract away the details we want students to see

A MODEST LAB THAT MIRRORS REAL-WORLD SYSTEMS

What we set up?

- Designed a teaching lab environment to simulate real big data analytic workflows.
- Deployed a computing cluster with vendor support, which allowed us to focus on designing for student learning.

• Platform:

- Cloudera hadoop distribution (CDH)
- Tools: hive, spark, impala, sqoop, HDFS, YARN, etc

• Infrastructure:

- 3 physical servers with 5 virtual machines
- Master node + data nodes configured for cluster-based processing

Student access modes:

- Web UI (for hive, impala, sparksql, cloudera manager)
- SSH terminal (for system-level exploration)
- FTP client (for file exchange)

A MODEST LAB: SOFTWARE PLATFORM - HADOOP

What is Hadoop?

- One of the first widely adopted open-source frameworks for big data.
- Provides the foundation for modern big data platforms.
- Makes it possible to store and process massive datasets across many machines.
- Key idea: scale out by adding nodes, not scale up with one big server.

A MODEST LAB: SOFTWARE PLATFORM

Cloudera Hadoop distribution (CDH) Platform

What?

- ☐ An integrated Big Data ecosystem (Hive, Spark, Impala, Sqoop, HDFS, YARN).
- \square Supports the full workflow: ingest \rightarrow store \rightarrow process \rightarrow analyze.
- Provides students with a realistic environment, not just single tools.

Three key software layers:

- ☐ Integrate software to transfer data into ecosystem
- ☐ Store software to store and manage data
- □ Process, Analyze & Serve software to process and analyze data

A MODEST LAB: WHY CLOUDERA HADOOP

Cloudera Hadoop distribution (CDH) Platform

Why?

- ☐ Shows ecosystem integration, not isolated skills.
- Reflects industry practice but scaled down for education.
- ☐ Cloudera Manager made system health and job tracking visible.
- ☐ Reusable and repeatable across courses and student cohorts.

Other reasons:

- 1. manageable for teaching.
- 2. no messy installations on student laptops.

A MODEST LAB: CLOUDERA HADOOP SUPPORTS BIG DATA ANALYTICS PIPELINE

A MODEST LAB: MAPPING CLOUDER HADOOP WITH BIG DATA ANALYTICS PIPELINE

Pipeline Stage	Purpose	Cloudera Tool(s)
1. Data Ingestion	Ingest data from databases, logs, APIs	Sqoop (RDBMS → HDFS) Flume (logs → HDFS) Kafka (real-time streams) Hue Upload
2. Data Storing	Store raw or semi-structured data	HDFS (distributed file system) HBase (NoSQL, columnar)
3. Data Processing	Clean, transform, join, filter data	Hive (HiveQL) Spark (batch or structured streaming)
4. Data Analysis	Run SQL, ML, or statistical analysis	Impala (interactive SQL) Spark MLlib Hive (batch analytics)
5. Data Visualization	Present insights to users/admins	Hue (query interface + visualizations)

A MODEST LAB THAT MIRRORS REAL-WORLD SYSTEMS

What we set up?

- Designed a teaching lab environment to simulate real big data analytic workflows.
- Deployed a computing cluster with vendor support, which allowed us to focus on designing for student learning.
- Platform:
 - Cloudera hadoop distribution (CDH)
 - Tools: hive, spark, impala, sqoop, HDFS, YARN, etc.
- Infrastructure:
 - 3 physical servers with 5 virtual machines
 - Master node + data nodes configured for cluster-based processing
- Student access modes:
 - Web UI (for hive, impala, sparksql, cloudera manager)
 - SSH terminal (for system-level exploration)
 - FTP client (for file exchange)

A MODEST LAB: THE INFRASTRUCTURE

- 3 physical servers with 5 virtual machines
- Master Node the coordinator, keeps track of what job goes where.
- □ Data Nodes the workers, actually store and process pieces of the data.
- **Edge Node** the entry point, where students accessed tools and submitted jobs.

A MODEST LAB: THE INFRASTRUCTURE (WHY)

Why Set Up This Infrastructure (3 servers, 5 VMs)?

1.Pedagogical Need

- 1. Concept-heavy courses and notebooks hide the system layer.
- 2. Students rarely see how distributed systems actually work.
- 3. The infra made the invisible visible: nodes, job scheduling, monitoring.

https://bigdatalab-cdh-mn1.uitm.edu.my:/183/cmt/login

https://biadatalab-cdh-mn1.uitm.edu.mv:8090/cluster

A MODEST LAB: THE INFRASTRUCTURE (WHY)

Why Set Up This Infrastructure (3 servers, 5 VMs)?

2. Alignment with Hadoop's Core Features

- 1. **Distributed**: Even a small cluster showed data split across nodes.
- **2. Reliable:** Students observed fault tolerance and the reality of service restarts.
- **3. Commodity Hardware**: Demonstrated that Big Data principles can be learned without enterprise infrastructure.

A MODEST LAB: THE INFRASTRUCTURE (WHY)

Why Set Up This Infrastructure (3 servers, 5 VMs)?

3. Teaching Practicality

- 1. Small enough to manage with limited budget and support.
- 2. Big enough to mimic industry workflows (HDFS + YARN + Hive/Spark).

4. Scalable for Education

- 1. Reusable across courses, levels, and cohorts.
- 2. Flexible for both in-class and remote teaching.
- 3. Supports not just one-off labs, but assignments, projects, and FYPs.

A MODEST LAB THAT MIRRORS REAL-WORLD SYSTEMS

What we set up?

- Designed a teaching lab environment to simulate real big data analytic workflows.
- Deployed a computing cluster with vendor support, which allowed us to focus on designing for student learning.
- Platform:
 - Cloudera hadoop distribution (CDH)
 - Tools: hive, spark, impala, sqoop, HDFS, YARN, etc
- Infrastructure:
 - 3 physical servers with 5 virtual machines
 - Master node + data nodes configured for cluster-based processing
- Student access modes:
 - Web UI (for hive, impala, sparksql, cloudera manager)
 - SSH terminal (for system-level exploration)
 - FTP client (for file exchange)

FROM DOING TO UNDERSTANDING TO ASSIGNMENTS

- □ From Theory to Action students performed end-to-end Big Data tasks (ingest, store, process, analyze).
- □ From Execution to Insight they reflected on results and connected theory with system behavior.
- □Structured Assignments structured tasks captured these insights through benchmarking and reporting.

FROM EXECUTION TO INSIGHT

What students learned from their actions □ File formats matter → observed clear performance differences (text vs ORC). "I didn't expect file formats to matter so much, ORC was so much faster than Text." □ Design choices impact outcomes → partitioning & bucketing changed query speed and efficiency. "Partitioning and bucketing really changed the way queries performed." □ Comparative mindset → developed ability to analyze spark vs hive beyond syntax. "I could finally see why Spark behaves differently from Hive, even on the same data." □ System awareness → monitoring with cloudera manager showed how jobs consumed resources. "Watching Cloudera Manager showed me how jobs actually use memory and CPU." □ Reflective learning → moved from running queries to explaining why results differ. "It wasn't just about running queries, I learned to explain why the results differed."

ASSIGNMENT: FROM STRUCTURED TASKS TO INSIGHT

ASSIGNMENT: SPARK VS HIVE - COMPARATIVE BENCHMARKING

□ **Objective:** evaluate Sparksql vs Hive across the same table setups to understand architectural and performance differences.

☐ Student tasks:

- > Get a dataset and upload it to HDFS.
- Formulate the comparative benchmarking framework.
- ➤ Create hive tables with different configurations (such Internal/external, Textfile/parquet, Partitioned, bucketed).
- > Run complex queries (with join & group-by) on each setup.
- > Collect measurements: such as execution time, Storage/file size.
- Analyze trade-offs: query time vs file size vs table configuration.
- Interpret findings using charts + discussion.

☐ Learning focus:

➤ Storage design, hands-on benchmarking, memory-aware computing, interpreting system performance and understanding distributed processing behavior.

WHY KOLB'S EXPERIENTIAL CYCLE ANCHORED OUR COURSE DESIGN

Why kolb?

- □ Kolb's experiential learning theory supports **learning by doing**, followed by **reflection and experimentation** which
 is ideal for hands-on, technical courses.
- ☐ It provides a complete cycle.
- □ It is widely applied in computing education.
- "Many of our students didn't just run code, they reflected on why certain configurations worked better, formed new hypotheses, and tested again. That's kolb in action."

MAPPING KOLB'S CYCLE TO OUR ASSIGNMENTS

Kolb Stage	Student Activity
Concrete Experience	Students ran queries, loaded data, benchmarked Hive vs Spark
Reflective Observation	They reflected on why Parquet / ORC was faster, why bucketing / partitioning mattered
Abstract Conceptualization	They linked performance outcomes to data structure configurations / system design principles
Active Experimentation	They changed configs, reran jobs, tested new hypotheses

WHY THIS APPROACH IS SCALABLE AND REUSABLE

- ☐ Modest infrastructure, real impact
 - Deploying cluster environment: 3 servers, 5 VMs
 - > Stable enough for multi-user access big data operations
- ☐ Designed for teaching, not production
 - > No need for complex cloud services or autoscaling
 - > Students accessed real systems, not emulators or simplified GUIs
- ☐ Reusable across courses and levels
 - > Can be used for postgraduate and undergraduate related courses,
 - > Python analytics and benchmarking projects, and FYPs
- ☐ Remote and in-class friendly
 - Easy access for students regardless of learning mode (Intranet, Internet)

WHY NOT USE AWS OR GOOGLE CLOUD?

	Cloud platforms are powerful, but not always practical for teaching	Free tiers are limited or time-limited Budget and billing control are difficult for classroom settings
	Limited control and visibility	Hard to expose students to system-level details (YARN memory, spark logs, file system behavior)
Ō	Repeatability and reset issues	Labs are harder to reset or reuse consistently across semesters
	Our setup prioritizes learning over cloud elasticity	It's scalable for teaching, not for enterprise compute loads Students interact directly with tools and the environment

FUTURE DIRECTIONS

Scaling up the lab

■ Expanding the current cluster to support larger datasets and multi-course usage.

Cloud integration

☐ Introducing AWS academy / AWS educate modules to complement hadoop fundamentals.

Student pathways

Linking course outcomes to certifications (e.G. AWS data engineer certification).

Collaboration

Inviting colleagues to utilize the scaled-down lab for teaching and research testbed (e.G. For pilot experiments, applied domain research).

CONCLUSION

1

You don't need a cloud budget or enterprise cluster to teach big data meaningfully.

2

A well-designed, scaled-down lab can expose students to:

- Distributed storage
- Query optimization
- Performance tuning
- System-level thinking

3

The learning was not just technical, it was reflective, iterative, and empowering

Published article: https://link.springer.com/article/10.1007/s10639-022-